skip to main content


Search for: All records

Creators/Authors contains: "Markopoulou, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although advertising is a popular strategy for mobile app monetization, it is often desirable to block ads in order to improve usability, performance, privacy, and security. In this paper, we propose NoMoAds to block ads served by any app on a mobile device. NoMoAds leverages the network interface as a universal vantage point: it can intercept, inspect, and block outgoing packets from all apps on a mobile device. NoMoAds extracts features from packet headers and/or payload to train machine learning classifiers for detecting ad requests. To evaluate NoMoAds, we collect and label a new dataset using both EasyList and manually created rules. We show that NoMoAds is effective: it achieves an F-score of up to 97.8% and performs well when deployed in the wild. Furthermore, NoMoAds is able to detect mobile ads that are missed by EasyList (more than one-third of ads in our dataset). We also show that NoMoAds is efficient: it performs ad classification on a per-packet basis in real-time. To the best of our knowledge, NoMoAds is the first mobile ad-blocker to effectively and efficiently block ads served across all apps using a machine learning approach. 
    more » « less
  2. Mobile devices have access to personal, potentially sensitive data, and there is a growing number of mobile apps that have access to it and often transmit this personally identifiable information (PII) over the network. In this paper, we present an approach for detecting such PII “leaks” in network packets going out of the device, by first monitoring network packets on the device itself and then applying classifiers that can predict with high accuracy whether a packet contains a PII leak and of which type. We evaluate the performance of our classifiers using datasets that we collected and analyzed from scratch. We also report preliminary results that show that collaboration among users can further improve classification accuracy, thus motivating crowdsourcing and/or distributed learning of privacy leaks. 
    more » « less